Sonic hedgehog promotes rod photoreceptor differentiation in mammalian retinal cells in vitro.
نویسندگان
چکیده
The hedgehog gene family encodes secreted proteins important in many developmental patterning events in both vertebrates and invertebrates. In the Drosophila eye disk, hedgehog controls the progression of photoreceptor differentiation in the morphogenetic furrow. To investigate whether hedgehog proteins are also involved in the development of the vertebrate retina at stages of photoreceptor differentiation, we analyzed expression of the three known vertebrate hedgehog genes. We found that Sonic hedgehog and Desert hedgehog are expressed in the developing retina, albeit at very low levels, whereas Indian hedgehog (Ihh) is expressed in the developing and mature retinal pigmented epithelium, beginning at embryonic day 13. To determine whether hedgehog proteins have activities on developing retinal cells, we used an in vitro system in which much of retinal histogenesis is recapitulated. N-terminal recombinant Sonic Hedgehog protein (SHH-N) was added to rat retinal cultures for 3-12 d, and the numbers of retinal cells of various phenotypes were analyzed by immunohistochemistry. We found that SHH-N caused a transient increase in the number of retinal progenitor cells, and a 2- to 10-fold increase in the number of photoreceptors differentiating in the cultures when analyzed with three different photoreceptor-specific antigens. In contrast, the numbers of retinal ganglion cells and amacrine cells were similar to those in control cultures. These results show that Hedgehog proteins can regulate mitogenesis and photoreceptor differentiation in the vertebrate retina, and Ihh is a candidate factor from the pigmented epithelium to promote retinal progenitor proliferation and photoreceptor differentiation.
منابع مشابه
Sonic hedgehog promotes stem-cell potential of Müller glia in the mammalian retina.
Müller glia have been demonstrated to display stem-cell properties after retinal damage. Here, we report this potential can be regulated by Sonic hedgehog (Shh) signaling. Shh can stimulate proliferation of Müller glia through its receptor and target gene expressed on them, furthermore, Shh-treated Müller glia are induced to dedifferentiate by expressing progenitor-specific markers, and then ad...
متن کاملExpression of Sonic hedgehog and its putative role as a precursor cell mitogen in the developing mouse retina.
We show that Sonic hedgehog and patched are expressed in adjacent domains in the developing mouse retina. Treatment of cultures of perinatal mouse retinal cells with the amino-terminal fragment of Sonic hedgehog protein results in an increase in the proportion of cells that incorporate bromodeoxuridine, in total cell numbers, and in rod photoreceptors, amacrine cells and Muller glial cells, sug...
متن کاملRetinal ganglion cell-derived sonic hedgehog signaling is required for optic disc and stalk neuroepithelial cell development.
The development of optic stalk neuroepithelial cells depends on Hedgehog (Hh) signaling, yet the source(s) of Hh protein in the optic stalk is unknown. We provide genetic evidence that sonic hedgehog (Shh) from retinal ganglion cells (RGCs) promotes the development of optic disc and stalk neuroepithelial cells. We demonstrate that RGCs express Shh soon after differentiation, and cells at the op...
متن کاملMorphology of retinal photoreceptor layer in continuous light-exposed and dark-adapted male cats
The morphology of retinal photoreceptor layer was studied in continuous light-exposed and dark-adapteddomestic male cats (Felis catus). The eyes of 12 healthy adult cats (4 in continuous light-exposed group, 4 in continuous dark-adapted group, and 4 in control group) were routinely fixed and studied by electron microscope. Results showed that the general structure of photoreceptor layer in this...
متن کاملTaurine promotes the differentiation of a vertebrate retinal cell type in vitro.
The retina offers a model system for investigating the mechanisms that control cell type determination and differentiation in the vertebrate central nervous system. Previously, rod photoreceptor development in vitro was found to require a diffusible activity released by retinal cells (D. Altshuler and C. Cepko, Development 114, 947-957, 1992). In this report, we show that retinal-cell-condition...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 17 16 شماره
صفحات -
تاریخ انتشار 1997